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Fig. 1. ResearchCube renders research ideas as interactive nodes in a 3D evaluation space. Each axis represents a user-selected bipolar
trade-off dimension (e.g., theory-driven vs. data-driven). Users explore ideas by rotating the cube, and refine them by dragging nodes
toward desired trade-off balances.

Research ideation requires navigating trade-offs across multiple evaluative dimensions—yet most AI-assisted research ideation tools
present a missed opportunity: none explicitly design for shared human-AI exploration of multi-dimensional trade-off spaces. This
paper presents ResearchCube, a multi-dimensional trade-off exploration system that renders research ideas as manipulable nodes
along user-selected bipolar dimensions (e.g., theory-driven vs. data-driven). Rather than unipolar scales where “more is better,”
ResearchCube frames each axis as a trade-off spectrum with meaningful poles at both ends, making tensions in research choices
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explicit. To address the cold-start problem, the system proposes candidate dimension pairs from which users select up to three to
construct a personalized 3D evaluation space. Four primary interactions—dimension generation, spatial navigation, drag-based steering,
and idea combination—enable researchers to explore, compare, and refine ideas through direct spatial manipulation rather than textual
prompts.
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1 INTRODUCTION

Research ideation involves navigating a vast space of possibilities along multiple evaluative dimensions—novelty,
feasibility, impact, methodological rigor, and domain fit, among others. Navigating this multi-dimensional space is part
of what makes for creative ideas, particularly for “wicked,” open-ended problems with no obvious global optimum but
rather negotiations and trade-offs. While we have good systems for exploring ideas based on facets [9, 10] or spatial
manipulation [1, 12], evaluative multi-dimensionality is seldom an explicit focus—dimensionality is often left implicit
in favor of foregrounding idea facets or linear chats. This lack of explicit support leaves important and effortful work
to be done primarily using the researcher’s internal cognitive resources, missing opportunities for deeper human-AI
collaboration on research ideation.

Direct Intent Manipulation (DIM) [3] demonstrated that drag-based steering in a 2D canvas helps researchers iterate
on ideas more fluidly than prompt-only interfaces. However, DIM and similar systems evaluate ideas on fixed unipolar
dimensions (e.g., novelty scored 0–100), implicitly treating each criterion as “more is better.” Research evaluation is
rarely so straightforward: high novelty often comes at the cost of feasibility; broad scope may sacrifice depth. A more
nuanced approach would reframe each axis as a trade-off spectrum with meaningful poles at both ends—for example,
theory-driven vs. data-driven, or narrow domain vs. broad generalization.

This paper addresses this gap by introducing ResearchCube1, a system for multi-dimensional trade-off exploration
that renders research ideas as manipulable nodes along user-selected bipolar dimensions. This bipolar framing makes
trade-offs explicit and supports more nuanced positioning of ideas. To help users construct their evaluation space,
ResearchCube provides AI-assisted trade-off dimension generation: given a research intent, the system proposes
candidate bipolar dimension pairs, from which users select up to three to define the axes of an evaluation space (up to
3D). This scaffolding addresses the cold-start problem—users who lack clear evaluative frameworks can bootstrap from
AI suggestions while retaining full control over which trade-offs matter for their context.

This paper addresses the following research questions:

• RQ1. How can we represent research ideas in a multi-dimensional space where each axis corresponds to a
bipolar trade-off dimension rather than a unipolar scale?

• RQ2. How can direct manipulation interactions (drag-to-steer, drag-to-merge) be mapped onto this trade-off
space to support idea iteration and synthesis?

This paper presents a working system that instantiates these design ideas, demonstrating how trade-off-based
spatialization combined with direct manipulation can support fluid exploration of research idea spaces.

1Open-source implementation available at: https://github.com/[anonymized] (link will be provided upon acceptance).
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Table 1. Feature comparison across related systems that support spatial representation and AI-assisted idea generation.

System Dimension
Generation

Trade-off
Dimensions

Spatial
Navigation

Drag-Based
Steering

Idea
Combination

Idea
Fragmentation

Sensecape (UIST’23) [13]
Graphologue (UIST’23) [8]
Luminate (CHI’24) [12] ✓

PatchView (UIST’24) [1] ✓ ✓

Toyteller (CHI’25) [2] ✓

IdeaSynth (CHI’25) [9] ✓

Scideator (CHI’25) [10] ✓

DIM (UIST’25 Poster) [3] ✓ ✓

ResearchCube ✓ ✓ ✓ ✓ ✓ ✓

2 RELATEDWORK

Direct manipulation—continuous representation of objects, physical actions instead of syntax, and rapid reversible
operations [11]—has proven effective for complex cognitive tasks [7]. Spatial reasoning provides an intuitive substrate
for expressing nuanced distinctions [5], as humans naturally think in terms of proximity, direction, and relative position.
Semantic interaction systems like ForceSPIRE [4] leverage this capacity by mapping drag gestures to updates in
underlying analytical models, allowing users to steer document clustering through spatial arrangement. Recent work
applies these principles to generative AI: PatchView [1] enables drag-based manipulation along opposing dimensions
for worldbuilding, and Direct Intent Manipulation (DIM) [3] showed that dragging ideas toward target positions can
steer research ideation more fluidly than prompt-only interfaces.

However, direct manipulation of ideas requires a dimensional space in which to manipulate them. This raises the
question of how to construct meaningful evaluation dimensions. Luminate [12] addresses this through AI-assisted
dimension generation, proposing attribute dimensions based on user-provided examples for design exploration. Yet
Luminate’s dimensions emphasize attribute combinations rather than explicit trade-offs. Similarly, Sensecape [13]
enables multi-level abstraction of LLM-generated content and Graphologue [8] visualizes outputs as interactive node-link
diagrams, but neither provides evaluative dimensions that users can directly manipulate to steer generation.

For research ideation specifically, recent systems support iterative idea development through various mechanisms.
IdeaSynth [9] enables facet-based idea combination, allowing researchers to merge concepts from different sources.
Scideator [10] supports scientific ideation through structured recombination of research components. These systems
help researchers explore and refine ideas, but they do not employ spatial representations for steering, nor do they make
evaluative trade-offs explicit. The dimensional structure that could organize ideas spatially remains implicit, leaving
researchers to navigate trade-offs through their internal cognitive resources.

ResearchCube bridges this gap by combining direct manipulation with AI-assisted dimension generation tailored for
research ideation. Unlike prior systems that treat dimensions as independent attributes, ResearchCube frames each axis
as a bipolar trade-off with meaningful poles at both ends, making tensions visible and manipulable. This work treats
evaluative dimensions as both organizational scaffolds and control surfaces: the dimensional structure that organizes
ideas also serves as the interface for modifying them. Table 1 summarizes how ResearchCube compares with related
work across representative features.
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3 SYSTEM DESIGN

ResearchCube enables researchers to explore, evaluate, and refine research ideas through direct spatial manipulation.
The system renders ideas as interactive nodes in a multi-dimensional evaluation space, where each axis represents a
bipolar trade-off dimension selected by the user.

3.1 Interaction Design

ResearchCube supports four primary interactions: (1) dimension generation, where users construct their evaluation
framework from AI-suggested trade-off pairs; (2) spatial navigation, enabling 3D rotation with camera snapping for
precise manipulation; (3) drag-based steering, allowing users to reposition ideas toward new trade-off balances; and
(4) idea combination, synthesizing multiple ideas through proximity-based merging or fragment incorporation.

3.1.1 Dimension Generation. A central challenge in multi-dimensional ideation is that users often lack a clear evaluative
framework before they begin exploring. While Luminate [12] introduced AI-assisted dimension generation for design
exploration, ResearchCube extends this approach to research ideation with explicitly bipolar trade-off dimensions. To
address this cold-start problem, the system generates candidate trade-off dimension pairs based on the user’s initial
research intent. When a user enters an intent (e.g., “reinforcement learning for user intent prediction”), the system
proposes five bipolar dimension pairs, each representing a meaningful trade-off spectrum relevant to the research
domain. For example:

• Model Complexity: simple vs. complex
• Methodology: theory-driven vs. data-driven
• Scope: narrow domain vs. broad generalization
• Novelty: incremental vs. paradigm shift
• Validation: simulation vs. real-world deployment

The interface presents these suggestions in a two-column selection panel: the left column displays AI-generated
dimension pairs with descriptions explaining each pole; the right column shows three axis slots (X, Y, Z) where users
assign their chosen pairs. Users may select one, two, or three pairs depending on the desired complexity of exploration.
Once dimensions are confirmed, the system generates diverse seed ideas that vary along the selected dimensions,
ensuring broad coverage of the evaluation space. Each idea is scored and positioned according to its trade-off balance,
with results streaming progressively into the space.

3.1.2 Spatial Navigation. Navigating a 3D space on a 2D screen presents interaction challenges: free rotation can
disorient users, and dragging in arbitrary orientations creates ambiguity about which dimensions are being modified.
The system addresses this through camera snapping. Users can freely rotate the evaluation cube to inspect ideas from any
angle. However, when rotation stops, the camera automatically snaps to the nearest orthogonal face—front, back, left,
right, top, or bottom—aligning the view with exactly two axes while locking the third (depth) axis. This snapping ensures
that subsequent drag operations map unambiguously to the two visible dimensions. Users can also explicitly toggle
individual dimensions on or off: disabling one dimension collapses the 3D cube to a 2D plane; disabling two produces
a 1D line. This scalable dimensionality lets users focus on specific trade-offs or examine the full multi-dimensional
landscape as needed.
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3.1.3 Drag-Based Steering. The central interaction paradigm is drag-based steering: users express how they want an
idea to change by dragging its node to a new position in the evaluation space. When a user begins dragging, a ghost
node connected by a dashed line visualizes the proposed trajectory from the original position to the target. This preview
helps users understand exactly how the idea’s scores will change before committing. Upon releasing the drag, the
system offers two options: (1) Generate New Idea—the system rewrites the idea’s content to match the target position,
producing a variant that embodies the new balance of trade-offs; or (2) Re-evaluate Only—the system updates the
idea’s scores without changing content, useful when users disagree with the AI’s initial scoring. The steering interaction
makes intent expression spatial and continuous rather than verbal and discrete, supporting rapid iteration.

3.1.4 Idea Combination. Beyond refining individual ideas, users often want to synthesize promising elements from
multiple sources. The system supports two combination mechanisms at different granularities:

Drag-to-merge. When a user drags one idea node close to another (within a proximity threshold), the target node
highlights to indicate a potential merge. Releasing the drag triggers synthesis: the system combines the contributions of
both parent ideas into a new hybrid idea that integrates their complementary strengths. The merged idea is then scored
along all active dimensions and positioned accordingly in the evaluation space.

Fragment incorporation. Sometimes users identify a valuable phrase or concept within an idea that they want
to incorporate elsewhere without adopting the entire idea. Users can extract text snippets from any idea and save
them as fragments. To incorporate a fragment, users drag it onto any idea node; the system then revises the target idea
by integrating the fragment’s content. This supports non-linear ideation where users collect promising components
throughout a session and recombine them flexibly.

3.2 Design Implications

The design and development of ResearchCube surfaces several implications for future AI-assisted ideation systems.
Spatialization as shared representation. By rendering ideas as positions in a multi-dimensional evaluation

space, ResearchCube creates a shared representation [6] that both humans and AI can read and write. Users inspect
the landscape to understand how ideas compare; AI uses the same coordinate system to score new ideas and interpret
steering commands. This bidirectional legibility reduces the “black box” quality of LLM-based generation: users see
why an idea landed where it did (via per-dimension scores) and can contest that placement by dragging. Future systems
may extend this principle to other creative domains—design exploration, policy analysis, or scientific hypothesis
generation—wherever trade-offs can be externalized as interpretable axes.

AI-scaffolded evaluation frameworks. A persistent challenge in open-ended ideation is that users often lack a
clear evaluative framework before they begin. ResearchCube addresses this by having AI propose candidate dimension
pairs, lowering the barrier to entry while preserving user agency (users select which dimensions to adopt and can
edit labels). This scaffolding strategy—AI suggests structure, users curate and customize—may generalize to other
sensemaking tasks where the relevant criteria are not known in advance.

Dimensionality as a design variable. Supporting seamless transitions across dimensionality levels (up to 3D)
revealed that dimensionality itself is a useful design lever. Early-stage exploration benefits from lower dimensionality
(fewer axes, simpler visualization); as users develop richer mental models, they can “unlock” additional dimensions to
examine finer trade-offs. Systems that fix dimensionality upfront may miss opportunities to match interface complexity
to user readiness.
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